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Hi, I'm Gaurav!
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• Postdoc at Oregon State University 
and the AI Caring Institute

• Focus on cooperative decision 
making for asymmetric agents 
(agents with distinct capabilities 
and objectives)

• Research interests: multiagent 
systems, evolutionary and 
reinforcement learning, 
multi-objective decision making

https://gdixit.com



Hi, I'm Roxana!

• Assistant professor at Utrecht 
University, Netherlands

• Develop multi-agent decision making 
systems where each agent is driven 
by different objectives and goals, 
under the paradigm of multi-objective 
multi-agent reinforcement learning

• Keywords: multi-objective 
reinforcement learning, multi-agent 
systems, multi-objective game theory

http://roxanaradulescu.com
@rox_teo
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Hi, I'm Patrick!

• Lecturer Above the Bar 
(Assistant Professor) at 
University of Galway 

• My view - many real world 
problems (like traffic!) are 
fundamentally multi-objective 
and multi-agent

• Research interests: 
multi-objective decision 
making, reinforcement learning, 
multi-agent systems, game 
theory, optimisation
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Tutorial Roadmap
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Part 1 - Introduction
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Why multiple objectives? 
(Patrick)
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Because life is not simple

• What are your objectives for your 
current research project?

• Publishing asap?
• Quality of conference/journal?
• Collaboration potential?
• Flag-posting?
• Increasing funding potential?
• Finishing your PhD?
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Because life is not simple

• What are your objectives for your 
current research project?

• Publishing asap?
• Quality of conference/journal?
• Collaboration potential?
• Flag-posting?
• Increasing funding potential?
• Finishing your PhD?

• How about your co-authors?
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Scalar Reward Design Process

•  Design/tweak scalar reward function
•  (Re-)Train RL agent using new/updated reward function (may take 

hours or days)
•  Evaluate the outcome (and try to figure out what went wrong!)
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Scalar Reward Design Process

•  Design/tweak scalar reward function
•  (Re-)Train RL agent using new/updated reward function (may take 

hours or days)
•  Evaluate the outcome (and try to figure out what went wrong!)
● Repeat until the desired agent behaviour is (finally) learned

● Wasteful and time consuming process - each trained agent must be discarded if 
the reward function changes

● Designers implicitly bake in trade-offs between different behaviours
○ Should AI engineers make the decisions about these trade-offs?
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Scalar Reward Design Process

•  Design/tweak scalar reward function
•  (Re-)Train RL agent using new/updated reward function (may take 

hours or days)
•  Evaluate the outcome (and try to figure out what went wrong!)

● GT Sophy - Super Human Racing AI Agent, Sony AI

● Objectives: high precision race car control, efficient racing tactics 
and manoeuvres, while respecting an imprecisely defined racing 
etiquette

● With enough time and computation, good results can be 
achieved
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The reward hypothesis
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That all of what we mean by goals 
and purposes can be well thought of 
as the maximization of the expected 
value of the cumulative sum of a 
received scalar signal (called reward)’.



Part 2 - MOMADM Fundamentals
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2.1 Multi-Agent Learning
(Gaurav)
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Markov Decision Process (MDP)
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• MDP = 

• Set of states

• Set of actions

• The transition function (dynamics of the environment)

• A reward function

Markov Decision Process (MDP)
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Reinforcement Learning
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Discount Factor
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State

Action

Reward

Policy (Agent)

Episode Length

Transitions

Discounted Return

Reinforcement Learning
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• MDP = 

• Set of states

• Set of actions

• The transition function (dynamics of the environment)

• A reward function

• Discount factor 

Markov Decision Process (MDP)
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Multiagent MDP
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• MDP = 

• Set of states

• Set of joint actions 

• The transition function (dynamics of the environment)

• Reward function
  

• Discount factor 

Multiagent MDP
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• MDP = 

• Set of states

• Set of joint actions 

• The transition function (dynamics of the environment)

• Reward functions
   

• Discount factor 

Multiagent MDP: Stochastic Game
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2.2 Multi-Objective Decision-Making
(Roxana)
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Multi-Objective Reinforcement Learning

• Vector-valued reward function

• r = [r_objective1, r_objective2, …]

• Length of the reward vector = 

number of objectives
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Multi-Objective Reinforcement Learning

28

• Multi-Objective MDP

• Set of states

• Set of actions

• A vectorial reward function

                    objectives

• Transition function (dynamics of the environment)

• Discount factor 𝛾 ∈ [0, 1]



Value Functions and Policies
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The agent behaves according to a policy:   

The value function of a policy in a MOMDP:

where 



Value Functions and Policies
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• Vectorial value functions now supply only a partial ordering, even for a 

given state:

• We can no longer determine which values are optimal without additional 

information about how to prioritize the objectives



Utility Functions
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A utility function,     , is used to represent a user's preferences over objectives

Utility function maps a vector reward to a scalar utility:

 

is generally assumed to be monotonically increasing:



Utility Functions - Examples
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• Linear utility function:

• Each element w specifies how much one unit of value for the corresponding 

objective contributes to the scalarised value

• The elements of the weight vector are all positive real numbers and sum to 1



Utility Functions - Examples

33

• The product utility function - seeks to make the objective values as balanced as 

possible



2.3 Solution Sets
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Solution Sets
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• The utility function is often unknown

• In multi-objective settings there can now be multiple possibly optimal value 

vectors 𝐕

• We need to reason about sets of possibly optimal value vectors and policies 

when thinking about solutions to MORL problems



Undominated Set
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• The most general set of solutions: the undominated set

• The undominated set, U, is the subset of all possible policies Π for which 

there exists a possible utility function u with a maximal scalarised value:



Pareto Coverage Set

37

If the utility function u is any monotonically increasing function, then the 

Pareto Coverage Set (PCS) coincides with the undominated set:

where            is the Pareto dominance relationship: 



Pareto Front

38

• The Pareto front (PF) is the set containing the value functions 

corresponding to the PCS policies

• Pareto dominance illustration, maximising 

objectives

• Solution A strongly dominates solution C

• Solution B weakly dominates solution C

• A and B are incomparable



Pareto Front

39

• Black points indicate solutions which 

form the Pareto front

• Grey solutions are dominated by at 

least one member of the Pareto front



Convex Coverage Set (Convex Hull)
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• The convex coverage set is the undominated set 

for non-decreasing linear utility functions

• The Convex Hull (CH) contains the value 

functions corresponding to the CCS policies



Convex Hull  versus Pareto Front
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Limitations of linear utilities

42

• Pareto front containing a concave region, 
indicated by the grey points

• Fundamental limitation of linear 
scalarisation: it cannot find policies which 
lie in non-convex regions of the Pareto 
front

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation 

methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.



Axiomatic approach
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• Defines the optimal solution set to be the Pareto front

• Advantage: retrieve a solution set containing an optimal policy for any 

possible monotonically increasing utility function, without any need to 

explicitly consider the details of those potential utility functions

• Disadvantages: 

- the set is typically large, and may be prohibitively expensive to retrieve

- cannot exploit existing domain knowledge (e.g., in practical settings) 



Utility-based approach
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• Puts the user's utility at the center of the learning process

• Solution should be derived from utility (not axiomatically assumed)

• The properties of the user’s utility function may drastically alter the desired 

solution, and what methods are available



Utility-based approach
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• Does not exclude or contradict the use of axiomatic methods

• When it is not possible to establish any constraints on the user’s utility 

function, or other characteristics of the solution, prior to learning, we should 

still resort to axiomatic methods



Optimisation criteria

• Vectorial reward function

• Utility-based perspective
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Optimisation criteria

47



Optimisation criteria
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Optimisation criteria

• Expected Scalarised Returns (ESR)
• Calculate the expectation of the utility from the payoffs
• Utility of an individual policy execution
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Optimisation criteria

• Expected Scalarised Returns (ESR)
• Calculate the expectation of the utility from the 

payoffs
• Utility of an individual policy execution

• Scalarised Expected Returns (SER)
• Calculate the utility of the expected payoff
• Utility of the average payoff from several 

executions of the policy
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Optimisation criteria

• Expected Scalarised Returns (ESR)

• Scalarised Expected Returns (SER)

51



ESR

• The utility of a user is derived from a single 
execution of a policy

• Understudied in the RL literature

• ESR set is defined as the set of optimal solutions 

52

Hayes, C. F., Verstraeten, T., Roijers, D. M., Howley, E., & Mannion, P. (2022). 
Expected scalarised returns dominance: a new solution concept for 
multi-objective decision making. Neural Computing and Applications, 1-21.



SER

• The utility of a user is derived from multiple 
executions of a policy (i.e., user is 
concerned about achieving an optimal 
utility over multiple policy executions) 

• Most commonly used optimisation criterion 
in multi-objective RL and planning

• Coverage set is defined as a set of optimal 
solutions for all possible utility functions

53



Optimisation criteria

• Note that:

• SER = ESR under linear scalarisation 

• Which criterion should be chosen for 
optimisation depends on how the policies are 
used in practice
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Evaluation Metrics

• Axiomatic‐based evaluation metrics
• The hypervolume metric

• The ε−metric

• Cardinality

• Utility‐based evaluation metrics
• Expected utility metric (EUM)

• Maximal utility loss (MUL)

55



Hypervolume

• Measures the (hyper-)volume in value-space 
Pareto-dominated by the set of policies in an approximate 
coverage set

• Correlates with (but is not equal to) the spread of a set of 
undominated solutions over the possible multi-objective 
solution space

56



Hypervolume

• Left: The hypervolume for a 
2-objective maximisation 
problem. Solutions in red form 
the undominated set,  
solutions in black are said to 
be dominated. The shaded 
area denotes the hypervolume 
of the undominated set with 
respect to the reference point 
(shown in blue). 

• Right: The effect of adding two 
new points (shown in green) to 
the undominated set
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Hypervolume

• Hypervolume values are difficult to interpret

• The benefit of a certain increase or decrease in hypervolume is not 
readily apparent to the end user:

• adding a non-dominated solution at the extreme ends could lead to a large 
increase in the hypervolume, even if this additional solution is of little interest to 
the end user

• adding a new solution close to other solutions in the non-dominated set can 
result in a minimal increase in hypervolume, even if the new solution is valuable 
to the end user
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Expected utility metric 

• Aims to directly evaluating an agent’s ability to maximize user utility
• Defined as the expected utility for a user from this solution set, 

under some prior distribution over user utility functions

• Under the SER optimality criterion:

• Useful when we care about the agent’s ability to do well across 
many different utility functions

59



Maximal utility loss

• Measures the maximal loss in utility that occurs when taking a policy from a given 
solution set, instead of the full set of possibly optimal solutions

• Under the SER optimality criterion:
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Connections to other problems - POMDPs

• If one assumes linear utility functions, POMDPs are a superclass of 
MOMDPs 

• Intuitively, imagine there would be a "true objective" and the linear weights 
of the utility function would form a "belief" over what the true objective 
would be

• MOMDPs and POMDPs have different interpretations

• Theoretical results and methods from POMDPs can be transferred/adapted 
for MOMDPs (e.g., Optimistic Linear Support - approximate the CCS)
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Multi-objective as multi-agent problems

• Objectives are not agents
• Cast single-agent multi-objective problems as multi-agent 

problems, with each agent representing a competing objective

• Either through voting rules or Nash equilibria a policy is selected 

Q: What do you think is the potential issue with such approaches?

62



Multi-objective as multi-agent problems

• Such mechanisms offer no guarantees with respect to the user's utility 
and it is unclear if these "compromise solutions" represents desired 
trade-offs or not

• Note that objectives can be more or less important and may have 
non-linear interactions in the utility function 

• This is different than determining trade-offs  between the individual 
payoffs of agents 

63



Multi-objective as multi-agent problems

• But altruistic agents can see other agents as objectives 

• An altruistic agent could see the utility of other agents as objectives 

• Modelling other agents as objectives enables explicitly imposing 
fairness between these objectives, i.e., the utilities of the agents 

• Lorenz dominance ordering - a refinement of Pareto dominance, 
adding  a predilection towards a more balanced distribution of 
values over the objectives 
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Human-aligned agents

• How to ensure that the decisions and behaviour of autonomous 
agents are safe, trustworthy, aligned, interpretable, fair, and 
unbiased 

• Since these are additional considerations beyond maximising the 
agent’s primary reward, there is a clear link to multi-objective 
approaches 

65



2.4 Multi-objective multi-agent 
decision making (Gaurav)
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Because life really is not simple

• What are your objectives for
your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?

• How about your co-authors?

67



Life is still not simple

• What are your objectives for
your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?

• Setting?
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Life is still not simple at all?

• What are your objectives for
your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?

• Truly cooperative though?

69



Mathematical models

Models:
On the basis of rewards (in 
objectives) and observations 
(about states).
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Mathematical models

Models:
On the basis of rewards (in 
objectives) and observations 
(about states).

But utility is not yet modelled!
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MOMADM taxonomy
based on rewards and utilities (Patrick)
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Taxonomy

Rădulescu, R., Mannion, P., Roijers, D. M., & 
Nowé, A. (2020). Multi-objective multi-agent 
decision making: a utility-based analysis and 
survey. Autonomous Agents and Multi-Agent 
Systems, 34(1), 1-52.
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Taxonomy

ESR / S
ER
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Solution concepts

75

Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multi-agent decision making: a utility-based 
analysis and survey. Autonomous Agents and Multi-Agent Systems, 34(1), 1-52.



Coverage sets 

• Contain at least one optimal policy 
for each possible utility function

• TRTU: rewards and derived utility is 
shared between agents, with one utility function selected during 
execution

• TRIU: agent can (contractually) agree which policy to execute
• IRIU: set of possible best responses to the behaviour of other 

agents

76



Coverage sets: negotiation 

• Automated negotiation 
• Autonomous negotiating agents, representing their user’s 

interests/preferences
• Reach a compromise that satisfies all the involved parties
• Pursue equity (i.e., fairness and justice)

● Baarslag, T., Kaisers, M., Gerding, E., Jonker, C. M., & 
Gratch, J. (2017). When will negotiation agents be 
able to represent us? The challenges and 
opportunities for autonomous negotiators. 
International Joint Conferences on Artificial 
Intelligence.

● Aydoğan, R., & Jonker, C. M. (2023). A Survey of 
Decision Support Mechanisms for Negotiation. In 
Recent Advances in Agent-Based Negotiation: 
Applications and Competition Challenges (pp. 
30-51). Singapore: Springer Nature Singapore.
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Social Welfare and Mechanism Design

• System perspective: what is a socially 
desirable outcome

Design a system that forces agents to the truthful about their 
utilities and leads to optimal solution under W

78



Equilibria and stability concepts

• Stable outcomes from which 
self-interested 
agents have no incentive to deviate

• Nash equilibria, correlated equilibria, 
cyclic equilibria, coalition formation 
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Nash Equilibrium

• No agent can improve their utility by unilaterally deviating from 
the joint strategy

• Nash equilibrium under SER:

• Nash equilibrium under ESR:
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Other solution concepts

• Cyclic Nash equilibria
• No agent can improve their utility by 

unilaterally deviating from a joint cyclic 
strategy

• Correlated equilibria
• No agent can improve their utility by unilaterally 

deviating from the recommendation of the 
correlated signal, given by an external 
mechanism

81



Part 3 - Deep dive in the MOMADM taxonomy
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3.1 Team Reward - Team Utility
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Team Reward Team Utility

84

Agrawal  et al. (2015). Non-additive multi-objective robot coalition formation

Brys et al. (2014). Distributed learning and multi-objectivity in traffic light control

Roijers et al.  (2013). Multi-objective variable elimination for collaborative graphical games

Roijers et al.  (2014). Linear support for multi-objective coordination graph

Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-II Credit assignment in EA

Joint actions with 
coordination graphs

Scalarization and Coaliations
 in RL + EAs



State

Action

Reward

Policy (Agent)

Episode Length

Transitions

Discounted Return

Reinforcement Learning
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Why Evolutionary Algorithms?

How do we optimize without gradients?

• Creative diverse solutions
• Good at escaping local minima
• Can find partial solutions
• Good at combining partial solutions

86

Cully et al. (2015). Robots that can adapt like animals

Such et al. (2017).  Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning

Chatzilygeroudis et al. (2021). Quality-diversity optimization: a novel branch of stochastic optimization



Evolutionary Algorithms
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How to solve RL Problems?
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Evolutionary Perspective for RL
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Evolutionary Perspective for RL
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Neuroevolution for RL
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Neuroevolution for RL
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Such et al. (2018). Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning



Evolution Strategies for RL
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Evolution Strategies for RL
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David Ha (2017). Visual Evolution Strategies  https://blog.otoro.net/2017/10/29/visual-evolution-strategies

Salmans et al. (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Chrabaszcz et al. (2018). Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari



Team Reward Team Utility
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Agrawal  et al. (2015). Non-additive multi-objective robot coalition formation

Brys et al. (2014). Distributed learning and multi-objectivity in traffic light control

Roijers et al.  (2013). Multi-objective variable elimination for collaborative graphical games

Roijers et al.  (2014). Linear support for multi-objective coordination graph

Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-II Credit assignment in EA

Joint actions with 
coordination graphs

Scalarization and Coaliations
 in RL + EAs
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Non-dominated Sorting Genetic Algorithm (NSGA-II)
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Deb et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II

                  is dominated  by                   when: 
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NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II



Multiagent Credit Assignment
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Evaluation



Difference Reward
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Evaluation Evaluation
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NSGA-II - Multiagent Credit Assignment
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NSGA-II - Multiagent Credit Assignment
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Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-II



MOMAPPO (Roxana)

• Extension of the MAPPO algorithm to return a Pareto set of 
multi-agent policies in cooperative problems

• Employs decomposition to divide the MO problem into a collection 
of single-objective problems solved by a multi-agent RL algorithm

112

Felten, F., Ucak, U., Azmani, H., Peng, G., Röpke, 
W., Baier, H., ... & Rădulescu, R. (2024, August). 
MOMAland: A Set of Benchmarks for 
Multi-Objective Multi-Agent Reinforcement 
Learning. In Multi-objective Decision Making 
Workshop at ECAI 2024.



MOMAPPO
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Felten, F., Ucak, U., Azmani, H., Peng, G., Röpke, 
W., Baier, H., ... & Rădulescu, R. (2024, August). 
MOMAland: A Set of Benchmarks for 
Multi-Objective Multi-Agent Reinforcement 
Learning. In Multi-objective Decision Making 
Workshop at ECAI 2024.



MO-MIX
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Hu, T., Luo, B., Yang, C., & Huang, T. (2023). 
MO-MIX: Multi-objective multi-agent cooperative 
decision-making with deep reinforcement 
learning. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 45(10), 12098-12112.

• Conditions the value function network on the preferences
• Uses a Multi-Objective Mixing Network to concatenate the agent’s 

values 



3.2 Team Reward - Individual utility
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Evolutionary Perspective for RL
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Evolutionary and Reinforcement Learning Loop
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Evaluation

Replay Buffer

ActorCritic

EA Population



Evolutionary Reinforcement Learning (ERL)
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Evaluation

Replay Buffer

ActorCritic

EA Population

EA population

=> Parameter-space exploration

RL actor

=> action-space exploration

Actor is periodically injected in the EA population

Khadka & Tumer (2018). Evolution-guided policy gradient in reinforcement learning



Evolutionary Reinforcement Learning (ERL)
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Khadka & Tumer (2018). Evolution-guided policy gradient in reinforcement learning

Outperforms EA and RL baselines



Multi-Objective Multiagent ERL

120

Evaluation Replay Buffers
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Multi-Objective Multiagent ERL
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Evaluation Replay Buffers

ActorsCritics

EA Population

EA population

=> Improve team trade-offs

RL actors

=> maximize individual utilities

Actors are periodically injected in the EA population

Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems



Multi-Objective Multiagent ERL
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Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems

Outperforms MOEA and MORL baselines



Add Diversity for Improved Coverage 
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Evaluation Replay Buffers

ActorsCritics

EA Population

Generate EA population by sampling 

from RL actors

Update RL actors to maximize coverage 

in the behavior space

Diverse policies are periodically 

injected in the EA population

Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems



Quality-Diversity for MOMA Problems
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Nickelson et al. (2023). Shaping the Behavior Space with Counterfactual Agents in Multi-Objective Map Elites

Outperforms MOEA and Diversity-Search baselines



MOMA: EA and RL 

125

Nickelson et al. (2023). Shaping the Behavior Space with Counterfactual Agents in Multi-Objective Map Elites

Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems

Khadka & Tumer (2018). Evolution-guided policy gradient in reinforcement learning

Leibo et al. (2019). Malthusian Multi-Objective Reinforcement Learning

Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-II Credit assignment in RL and EA

Evolutionary + Reinforcement 
Learning

Diversity in utilities, trade-offs + 
better coverage



Multi-Objective Normal Form Games (Patrick)

• Introduced by Blackwell in 1956

• MONFG - tuple (N , A, p), with n ≥ 2 and C ≥ 2 objectives, where: 
• N = {1, ..., n} – set of players
• A = A1×···×An – set of actions
• p = (p1,..., pn) – vectorial payoffs

126



Example - SER

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)
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Example - Nash equilibrium

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)
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Example - Cyclic Nash equilibrium

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)

• Joint cyclic strategy
• Player 1: {A, B}
• Player 2: {A, B}
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Example - Correlated equilibrium

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)

• Correlated strategy 𝜎
• 50% (A, A)
• 50% (B, B)
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(Im)balancing Act Game

• 2 players, 2 objective
• Same payoff vector for both players

L M R

L [4,0] [3,1] [2,2]

M [3,1] [2,2] [1,3]

R [2,2] [1,3] [0,4]
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ESR Equilibrium

• equilibrium 1: (0.75, 0, 0.25) and (0, 1, 0) 
expected utilities: 10 and 3

• equilibrium 2: (0.25, 0, 0.75) and (0, 1, 0) 
expected utilities: 10 and 3

L M R

L [4,0] [3,1] [2,2]

M [3,1] [2,2] [1,3]

R [2,2] [1,3] [0,4]

Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & 
Nowé, A. (2020). A utility-based analysis of equilibria in 
multi-objective normal-form games. The Knowledge 
Engineering Review, 35.

ESR L M R

L 16,0 10,3 8,4

M 10,3 8,4 10,3

R 8,4 10,3 16,0
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SER Equilibrium?

• In finite MONFGs, where each agent seeks 
to maximise the utility under SER, Nash 
equilibria need not exist. 

L M R

L [4,0] [3,1] [2,2]

M [3,1] [2,2] [1,3]

R [2,2] [1,3] [0,4]

Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & 
Nowé, A. (2020). A utility-based analysis of equilibria in 
multi-objective normal-form games. The Knowledge 
Engineering Review, 35.

133



Bridging continuous games and MONFGs 

• Continuous games:

• Single objective
• Infinite number of pure strategies
• Continuous payoff functions
• Benefit from many theoretical results
• Algorithmically challenging Röpke, W., Groenland, C., Rădulescu, R., 

Nowé, A., & Roijers, D. M. (2023). Bridging 
the Gap Between Single and Multi 
Objective Games. AAMAS 2023.

Assumption: convex strategy set
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Bridging continuous games and MONFGs 

• Build mapping between MONFGs and continuous games
• Ensure that it preserves key dynamics
• Leverage the link for theoretical and algorithmic improvements
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Bridging continuous games and MONFGs 

• Every mixed strategy in the MONFG 
becomes a pure strategy in the continuous 
game

Röpke, W., Groenland, C., Rădulescu, R., 
Nowé, A., & Roijers, D. M. (2023). Bridging 
the Gap Between Single and Multi 
Objective Games. AAMAS 2023.
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Bridging continuous games and MONFGs 
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Bridging continuous games and MONFGs 
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Bridging continuous games and MONFGs 
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Bridging continuous games and MONFGs 
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Theoretical insights

• Mixed strategy equilibria in the MONFG are 
pure strategy equilibria in the continuous game

• Continuous games are not guaranteed to have 
a pure strategy Nash equilibrium

▶ Nash equilibria are not guaranteed in 
MONFGs
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Relations between optimisation criteria

• Mixed strategies
• No relation between both optimisation criteria in general

A B

A (1, 0); (1, 0) (0, 1); (0, 1)

B (0, 1); (0, 1) (-10, 0); (-10, 0)

A B

A 0.1; 0.1 0; 0

B 0; 0 -0.1; -0.1

No sharing of number of equilibria or equilibria themselves

Multi-objective reward vectors Scalarised utility for both agents
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Relations between optimisation criteria

• Pure strategies
• Pure strategy equilibrium under SER is also one under ESR
• Bidirectional when assuming (quasi)convex utility functions

• We can extend this to blended settings
• Pure strategy equilibrium under SER is also one in any blended 

setting
• Bidirectional when assuming (quasi)convex utility functions

143



3.3 Individual Reward - Individual utility
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Scalarised Individual Q-learning

145

• Assume a known linear utility function for each agent

Mannion, P., Devlin, S., Duggan, J., & Howley, E. 
(2018). Reward shaping for knowledge-based 
multi-objective multi-agent reinforcement learning. 
The Knowledge Engineering Review, 33, e23.

Felten, F., Ucak, U., Azmani, H., Peng, G., Röpke, 
W., Baier, H., Mannion, P., Roijers, D.M., Terry, 
J.K., Talbi, E.G. and Danoy, G., 2024. MOMAland: 
A Set of Benchmarks for Multi-Objective 
Multi-Agent Reinforcement Learning. arXiv 
preprint arXiv:2407.16312.



IRIU with dynamic preferences
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• Multi-objective Wolfpack environment – two predators 

(blue) must catch a prey (red)

• Separate rewards for team capture and lone capture

• Changing the agents’ preferences for team/lone captures 

influences the team capture rate

O'Callaghan, D. and Mannion, P., 2021, May. 
Tunable behaviours in sequential social dilemmas 
using multi-objective reinforcement learning. In 
Proceedings of the 20th international conference 
on autonomous agents and multiagent systems 
(pp. 1610-1612).



3.4 Team Reward - Social Choice 
(Roxana)
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3.5 Individual Reward - Social Choice
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 Generalised Toll-based Q-learning

• Considers the toll-based route choice problem, where 
self-interested agents repeatedly commute attempting to 
minimise their travel times and costs

• Realigns agents’ heterogeneous preferences over travel time and 
monetary expenses to obtain a system-efficient equilibrium

149

Ramos, G. D. O., Rădulescu, R., Nowé, A., & 
Tavares, A. R. (2020, May). Toll-based learning for 
minimising congestion under heterogeneous 
preferences. In Proceedings of the 19th 
International Conference on Autonomous Agents 
and MultiAgent Systems (pp. 1098-1106).



Additional work

• Conor F. Hayes, Timothy Verstraeten, Diederik M. Roijers, Enda Howley, Patrick Mannion - Multi-Objective 
Coordination Graphs for the Expected Scalarised Returns with Generative Flow Models. In European 
Workshop on Reinforcement Learning (EWRL 2022), Milan, 2022

• Rădulescu, R., Verstraeten, T., Zhang, Y., Mannion, P., Roijers, D. M., & Nowé, A. (2022). Opponent learning 
awareness and modelling in multi-objective normal form games. Neural Computing and Applications, 1-23.

• Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2022). Preference communication in multi-objective 
normal-form games. Neural Computing and Applications, 1-26.

150



Part 4 Tools and open problems
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Benchmarks and Tools - MO-Gymnasium

Alegre et al. 2022. MO-Gym: A 
Library of Multi-Objective 
Reinforcement Learning 
Environments. In Proceedings of 
the 34th Benelux Conference on 
Artificial Intelligence 
BNAIC/Benelearn 2022.
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Benchmarks and Tools - MO-Gymnasium
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Benchmarks and Tools - MORL-baselines

Felten, F., Alegre, L. N., Nowe, A., 
Bazzan, A., Talbi, E. G., Danoy, G., & 
C da Silva, B. (2024). A toolkit for 
reliable benchmarking and research 
in multi-objective reinforcement 
learning. Advances in Neural 
Information Processing Systems, 36.
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MOMAland – MOMADM benchmarks

● Open source Python library for developing and comparing 
multi-objective multi-agent reinforcement learning algorithms
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https://momaland.farama.org/

https://momaland.farama.org/


MOMAland – MOMADM benchmarks
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https://momaland.farama.org/

https://momaland.farama.org/


Open questions 

• Solution concepts for the axiomatic approach to MOMA problems

• Results for more complex (e.g., sequential, partially observable) settings

• Integrated pipelines for planning -> negotiation -> execution

• Utility modelling, e.g., inferring preferences of other agents via 
demonstrations or opponent modelling

• Strategic disclosure of utility information to the other agents
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Multi-Objective Decision Making Workshop

• Tomorrow 

• Full day workshop

• Location: V1 Ferrol at the School of 
Communication Sciences 

https://modem2024.vub.ac.be/
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https://modem2023.vub.ac.be/


Thank you for listening

• Questions?

• Any additional questions drop us a message at: 
• dixitg@oregonstate.edu
• r.t.radulescu@uu.nl
• patrick.mannion@universityofgalway.ie
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This tutorial was based (primarily) on
• Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M., ... & Roijers, D. M. 

(2022). A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and 
Multi-Agent Systems, 36(1), 26.

• Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multi-agent decision making: a 
utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems, 34(1), 1-52.

• Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé, A. (2020). A utility-based analysis of equilibria 
in multi-objective normal-form games. The Knowledge Engineering Review, 35.

• Rădulescu, R. (2021). Decision Making in Multi-Objective Multi-Agent Systems: A Utility-Based Perspective. 
Brussels: Crazy Copy Center Productions.

• Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential 
decision-making. Journal of Artificial Intelligence Research, 48, 67-113.

• Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2022). On Nash equilibria in normal-form games with 
vectorial payoffs. Autonomous Agents and Multi-Agent Systems, 36(2), 53.

• Röpke, W., Groenland, C., Rădulescu, R., Nowé, A., & Roijers, D. M. (2023). Bridging the Gap Between Single 
and Multi Objective Games. AAMAS 2023.
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