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Hi, I'm Gaurav!

e« Postdoc at Oregon State University
and the Al Caring Institute

e Focus on cooperative decision
making for asymmetric agents
(agents with distinct capabilities
and objectives)

o Research interests: multiagent
systems, evolutionary and
reinforcement learning,
multi-objective decision making

https://gdixit.com
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Hi, I'm Roxana!

e Assistant professor at Utrecht
University, Netherlands

e Develop multi-agent decision making
systems where each agent is driven
by different objectives and goals,
under the paradigm of multi-objective
multi-agent reinforcement learning

e Keywords: multi-objective
reinforcement learning, multi-agent
systems, multi-objective game theory

) @rox_teo

http://roxanaradulescu.com
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Hi, I'm Patrick!

Lecturer Above the Bar
(Assistant Professor) at
University of Galway

My view - many real world
problems (like traffic!) are
fundamentally multi-objective
and multi-agent

Research interests:
multi-objective decision
making, reinforcement learning,
multi-agent systems, game
theory, optimisation
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[ Home | City Tribune

Author: Stephen Corrigan
~ 1 minutes read

Galway is seventh-worst city in @
Europe for car traffic congestion
Published: 27 January 2023

From this week's Galway City Tribune
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Tutorial Roadmap

Solution concepts and seminal
work for each taxonomy category

Part 2 - Fundamentals e..
multi-agent learning, multi-
objective decision-making,
MOMADM taxonomy

Tools, libraries, overview of
open challenges, open
discussion

Part 1 - Introduction
Motivation and example
problems

QLLSCOILNA
A GAILLIMHE

¥ UNIVERSITY
OF GALWAY

R Oregon State §¥’% gtr.echt.t
University Y University




Part 1 - Introduction
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Why multiple objectives?
(Patrick)
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Because life is not simple

« What are your objectives for your
current research project?

e Publishing asap?

e Quality of conference/journal?
e Collaboration potential?

e Flag-posting?

e Increasing funding potential?

e Finishing your PhD?
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Because life is not simple

« What are your objectives for your
current research project?

e Publishing asap?

e Quality of conference/journal?
e Collaboration potential?

e Flag-posting?

e Increasing funding potential?

e Finishing your PhD?

« How about your co-authors?
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Scalar Reward Design Process

e Design/tweak scalar reward function

e (Re-)Train RL agent using new/updated reward function (may take
hours or days)

e Evaluate the outcome (and try to figure out what went wrong!)
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Scalar Reward Design Process

e Design/tweak scalar reward function

e (Re-)Train RL agent using new/updated reward function (may take
hours or days)

e Evaluate the outcome (and try to figure out what went wrong!)
e Repeat until the desired agent behaviour is (finally) learned

e Wasteful and time consuming process - each trained agent must be discarded if
the reward function changes

e Designers implicitly bake in trade-offs between different behaviours
o Should Al engineers make the decisions about these trade-offs?
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Scalar Reward Design Process

e Design/tweak scalar reward function

e (Re-)Train RL agent using new/updated reward function (may take
hours or days)

e Evaluate the outcome (and try to figure out what went wrong!)

Theinternationaljournal of sci

W e GT Sophy - Super Human Racing Al Agent, Sony Al

e Objectives: high precision race car control, efficient racing tactics
and manoeuvres, while respecting an imprecisely defined racing

etiquette
[]RMNG = 1 ® With enough time and computation, good results can be
FORCE achieved

Alalgorif thmo t ompt h man
champio
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The reward hypothesis

That all of what we mean by goals

and purposes can be well thought of

as the maximization of the expected
value of the cumulative sum of a

received scalar signal (called reward)’.

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Reward is enough )

David Silver *, Satinder Singh, Doina Precup, Richard S. Sutton

ARTICLE INFO ABSTRACT

Article history: In this article we hypothesise that intelligence, and its associated abilities, can be
Received 12 November 2020 understood as subserving the maximisation of reward. Accordingly, reward is enough to
Received in revised form 28 April 2021 drive behaviour that exhibits abilities studied in natural and artificial intelligence, including
:\t/;ielg(t;g ;zlm:yzzoélay - knowledge, learning, ion, social intelli language, isation and imitation.
This is in contrast to the view that specialised problem formulations are needed for each
ability, based on other signals or objectives. Furthermore, we suggest that agents that learn
through trial and error experience to maximise reward could learn behaviour that exhibits
Artificial general intelligence most if not all of these abilities, and therefore that powerful reinforcement learning agents
Reinforcement learning could constitute a solution to artificial general intelligence.
Reward © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Artificial intelligence

Autonomous Agents and Multi-Agent Systems (2022) 36:41
https://doi.org/10.1007/510458-022-09575-5
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Scalar reward is not enough: a response to Silver, Singh,
Precup and Sutton (2021)

Peter Vamplew'® . Benjamin J. Smith? - Johan Killstrom?® - Gabriel Ramos® -
Roxana Radulescu® - Diederik M. Roijers®’ - Conor F. Hayes® - Fredrik Heintz3 -
Patrick Mannion® - Pieter J. K. Libin®%'° . Richard Dazeley'" - Cameron Foale'

Accepted: 2 July 2022 / Published online: 16 July 2022
©The Author(s) 2022

Abstract

The recent paper “Reward is Enough” by Silver, Singh, Precup and Sutton posits that the
concept of reward maximisation is sufficient to underpin all intelligence, both natural and
artificial, and provides a suitable basis for the creation of artificial general intelligence. We
contest the underlying assumption of Silver et al. that such reward can be scalar-valued.
In this paper we explain why scalar rewards are insufficient to account for some aspects
of both biological and computational intelligence, and argue in favour of explicitly multi-
objective models of reward maximisation. Furthermore, we contend that even if scalar
reward functions can trigger intelligent behaviour in specific cases, this type of reward
is insufficient for the development of human-aligned artificial general intelligence due to
unacceptable risks of unsafe or unethical behaviour.
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Part 2 - MOMADM Fundamentals
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2.1 Multi-Agent Learning
(Gaurav)
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Markov Decision Process (MDP)

(®)
"
Agent

Environment
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Markov Decision Process (MDP)

'MDP:<S,A7T777R>
* Set of states A ,-,,
* Set of actions
* The transition function (dynamics of the environment) Erronmen:

e Arewardfunction R: S x Ax S — R
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Reinforcement Learning

State s

Action a s |r .

Reward r

Policy (Agent) m(als) m: 8 x A—[0,1]

Episode Length T Objective
max E [X; 7]

Transitions (s, a, s, 1)
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Discount Factor

N N

Objective

t t11 42 )

= ce max E [3; ry]

Agent Tt Tt+1 Tt+2

Maximized Objective
1 max E |Z;v" r]
reward
weight ! | —_ Discount Factor
1 2 3 /y
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Reinforcement Learning

State s o

Action a Agent

Reward T

Policy (Agent) m(als) w:SxA—=]0,1]

Episode Length T

Transitions (s, a, s, 7) . .
Objective

Discounted Return G =L ylr

max E [X; 7]
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Markov Decision Process (MDP)

'MDP:<S,A7T777R>
Set of states A
Set of actions
The transition function (dynamics of the environment) Erronmen:

Areward function R: S X A x S = R
Discount factor 7Y € [O, 1]
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Multiagent MDP

3

Environment
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Multiagent MDP

- MoP= < S, A, T, v, R >

Set of states

Set of joint actions A= A; X --- X A,

The transition function (dynamics of the environment)

Reward function

R:S5xAxS—=R
Discount factor y € |0, 1]
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Multiagent MDP: Stochastic Game

- MoP= < S, A, T, v, R >
* Set of states s IR

* Setofjointactions A=A4; x---x A,

* The transition function (dynamics of the environment)

* Reward functions R =Ry x--- xRy
R; : SxAxS—R
* Discount factor y € [0, 1]
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2.2 Multi-Objective Decision-Making
(R ENRE),
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Multi-Objective Reinforcement Learning

® \/ector-valued reward function
State

® = [r_objectivel, r_objective?, ..] Vectorial reward

—~ N

number of objectives

® [ength of the reward vector = (OED) « \ =
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Multi-Objective Reinforcement Learning

Multi-Objective MDP <= § A T" ~ R >
Set of states

Set of actions

A vectorial reward function R.: S X A X S — Rd
d > 2 objectives

Transition function (dynamics of the environment)

Discount factor y € [0, 1]
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Value Functions and Policies

The agent behaves according to a policy:

State
v . S X A — [O’ ]_] Vectorial reward
The value function of a policy in a MOMDP: (omD) « N\

— N

VI=E|> 7't |mp
k=0

(

Action
where

er1 = R(Sk, ag, 8k+1)
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Value Functions and Policies

* Vectorial value functions now supply only a partial ordering, even for a

given state:

Vi (s) > Vi (s) but V7 (s) < V7 (s)

* We can no longer determine which values are optimal without additional

information about how to prioritize the objectives
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Utility Functions

A utility function, U, is used to represent a user's preferences over objectives

Utility function maps a vector reward to a scalar utility:

uw:RY S R

U is generally assumed to be monotonically increasing:

(vo, AN ng’) — W (V™) > u(V™)
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Utility Functions - Examples

Linear utility function:
u(VH)=w' V™

Each element w specifies how much one unit of value for the corresponding
objective contributes to the scalarised value

The elements of the weight vector are all positive real numbers and sum to 1
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Utility Functions - Examples

* The product utility function - seeks to make the objective values as balanced as

possible
d

u(VT) =[]V

o=1
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2.3 Solution Sets
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The utility function is often unknown

In multi-objective settings there can now be multiple possibly optimal value

vectors V

We need to reason about sets of possibly optimal value vectors and policies

when thinking about solutions to MORL problems
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Undominated Set

* The most general set of solutions: the undominated set

* The undominated set, U, is the subset of all possible policies I'l for which

there exists a possible utility function u with a maximal scalarised value:

U(11) = {w Tl ‘ Ju, ' € I : u(V™) > u(V“’)}
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Pareto Coverage Set

If the utility function u is any monotonically increasing function, then the

Pareto Coverage Set (PCS) coincides with the undominated set:
PCSID) ={rcl | cll: V™ =pV™}

where >~ P is the Pareto dominance relationship:

V™o p VT = Vi: VI >VI)A(Fi: VI >VT)

To %

(e RN

e Oregon State X ggiircelll'zity
<’ University N

37



Pareto Front

 The Pareto front (PF) is the set containing the value functions

corresponding to the PCS policies

A
B @
* Pareto dominance illustration, maximising g\ ® A
)
L =
objectives 'S
O
e Solution A strongly dominates solution C @
C @
* Solution B weakly dominates solution C
* A and B are incomparable >
objective 1
0 Oregon State gg’% Utrecht ey
University S University pE -




Pareto Front

A
* Black points indicate solutions which ® o o
form the Pareto front S\
D) 00O
> O.
= o
9 o
. . - O O o
* Grey solutions are dominated by at = o O ®
o
least one member of the Pareto front . o)
o S0 5% e

objective 1
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Convex Coverage Set (Convex Hull)

 The convex coverage set is the undominated set

for non-decreasing linear utility functions

CCSM)={recl|Iwvr ell:w' VT >w'V™}

 The Convex Hull (CH) contains the value

Value of objective 2

functions corresponding to the CCS policies

Dominated -

solutions ¢

Value of objective 1

QLLSCOILNA
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Convex Hull versus Pareto Front

12 3 456 7 8

®3H

1 2 3 4 5 6 7 8 00 02 04 06 08 10
U4 Wi
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Limitations of linear utilities

objective 2

A * Pareto front containing a concave region,

¢ 5 indicated by the grey points

o * Fundamental limitation of linear
o scalarisation: it cannot find policies which
lie iIn non-convex regions of the Pareto

® front

>
Obj eCtlve 1 Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evaluation
methods for multiobjective reinforcement learning algorithms. Machine learning, 84, 51-80.
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Axiomatic approach

Defines the optimal solution set to be the Pareto front

Advantage: retrieve a solution set containing an optimal policy for any

possible monotonically increasing utility function, without any need to

explicitly consider the details of those potential utility functions

Disadvantages:
the set is typically large, and may be prohibitively expensive to retrieve

cannot exploit existing domain knowledge (e.g., in practical settings)
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Utility-based approach

* Puts the user's utility at the center of the learning process

® Solution should be derived from utility (not axiomatically assumed)

o0

* The properties of the user’s utility function may drastically alter the desired

solution, and what methods are available
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& University S University o T v
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Utility-based approach
J
a
®* Does not exclude or contradict the use of axiomatic methods

* When it is not possible to establish any constraints on the user’s utility

function, or other characteristics of the solution, prior to learning, we should

still resort to axiomatic methods
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Optimisation criteria

e Vectorial reward function

e Utility-based perspective

u;: RY = R
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Optimisation criteria
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Optimisation criteria
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Optimisation criteria

e Expected Scalarised Returns (ESR)

e Calculate the expectation of the utility from the payoffs
e Ultility of an individual policy execution
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Optimisation criteria

e Expected Scalarised Returns (ESR)
e Calculate the expectation of the utility from the
payoffs
e Utility of an individual policy execution

e Scalarised Expected Returns (SER)
e Calculate the utility of the expected payoff

e Utility of the average payoff from several
executions of the policy
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Optimisation criteria

e Expected Scalarised Returns (ESR)

o0
VuJT:]E U Zytrl‘ In9M0
t=0

e Scalarised Expected Returns (SER)
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The utility of a user is derived from a single
execution of a policy

Understudied in the RL literature

ESR set is defined as the set of optimal solutions

Hayes, C. F., Verstraeten, T., Roijers, D. M., Howley, E., & Mannion, P. (2022).
Expected scalarised returns dominance: a new solution concept for
multi-objective decision making. Neural Computing and Applications, 1-21.
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The utility of a user is derived from multiple
executions of a policy (i.e., useris
concerned about achieving an optimal
utility over multiple policy executions)

Most commonly used optimisation criterion
in multi-objective RL and planning

Coverage set is defined as a set of optimal
solutions for all possible utility functions
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Optimisation criteria

e Note that:
e SER = ESR under linear scalarisation
e Which criterion should be chosen for

optimisation depends on how the policies are
used in practice
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Evaluation Metrics
® Axiomatic-based evaluation metrics /

® The hypervolume metric @
® The e—metric D D

® Cardinality o D

® Utility-based evaluation metrics
® Expected utility metric (EUM)
® Maximal utility loss (MUL)

QLLSCOILNA
GAILLIMHE

UNIVERSITY
OF GALWAY 55

To %

(e RN

e Oregon State X ggiircelll'zity
<’ University N



Hypervolume

® Measures the (hyper-)volume in value-space
Pareto-dominated by the set of policies in an approximate
coverage set

® Correlates with (but is not equal to) the spread of a set of
undominated solutions over the possible multi-objective
solution space
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Objective 2

- X
X o
X% 8
Objective 1 L

Oregon State
&’ University

Objective 1

:§V% Utrecht
%TL\\\? University

Left: The hypervolume for a

2-objective maximisation
problem. Solutions in red form
the undominated set,
solutions in black are said to
be dominated. The shaded
area denotes the hypervolume
of the undominated set with
respect to the reference point
(shown in blue).

Right: The effect of adding two

new points (shown in green) to
the undominated set
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Hypervolume

® Hypervolume values are difficult to interpret

® The benefit of a certain increase or decrease in hypervolume is not
readily apparent to the end user:

adding a non-dominated solution at the extreme ends could lead to a large
increase in the hypervolume, even if this additional solution is of little interest to
the end user

adding a new solution close to other solutions in the non-dominated set can
result in @ minimal increase in hypervolume, even if the new solution is valuable
to the end user
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Expected utility metric

® Aims to directly evaluating an agent’s ability to maximize user utility
® Defined as the expected utility for a user from this solution set,
under some prior distribution over user utility functions

® Under the SER optimality criterion:
EUM =Ep, [max u(V”)]
TeS
® Useful when we care about the agent’s ability to do well across
many different utility functions
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Maximal utility loss

® Measures the maximal loss in utility that occurs when taking a policy from a given

solution set, instead of the full set of possibly optimal solutions

® Under the SER optimality criterion:

MUL = max ( max u(V™ ) — max u(V”))
uceU \ m*eS* TeS
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Connections to other problems - POMDPs

® |f one assumes linear utility functions, POMDPs are a superclass of
MOMDPs

® |ntuitively, imagine there would be a "true objective" and the linear weights
of the utility function would form a "belief" over what the true objective
would be

® MOMDPs and POMDPs have different interpretations

® Theoretical results and methods from POMDPs can be transferred/adapted
for MOMDPs (e.g., Optimistic Linear Support - approximate the CCS)
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Multi-objective as multi-agent problems

e Objectives are not agents

® (Cast single-agent multi-objective problems as multi-agent
problems, with each agent representing a competing objective

® FEither through voting rules or Nash equilibria a policy is selected

Q: What do you think is the potential issue with such approaches?
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Multi-objective as multi-agent problems

® Such mechanisms offer no guarantees with respect to the user's utility

and it is unclear if these "compromise solutions" represents desired
trade-offs or not

® Note that objectives can be more or less important and may have
non-linear interactions in the utility function

® This is different than determining trade-offs between the individual
payoffs of agents
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Multi-objective as multi-agent problems

e But altruistic agents can see other agents as objectives
® An altruistic agent could see the utility of other agents as objectives

® Modelling other agents as objectives enables explicitly imposing
fairness between these objectives, i.e., the utilities of the agents

e |orenz dominance ordering - a refinement of Pareto dominance,
adding a predilection towards a more balanced distribution of
values over the objectives
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Human-aligned agents

e How to ensure that the decisions and behaviour of autonomous
agents are safe, trustworthy, aligned, interpretable, fair, and
unbiased

® Since these are additional considerations beyond maximising the
agent’s primary reward, there is a clear link to multi-objective
approaches
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2.4 Multi-objective multi-agent
decision making (Gaurav)
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Because life really is not simple

e \What are your objectives for

your current research project?
Publishing asap?

Quality of conference/journal?
Collaboration potential?
Flag-posting?

Increasing funding potential?
Finishing your PhD?

e How about your co-authors?

Oregon State A% Uerecht B Q:isco
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Life is still not simple

e \What are your objectives for

your current research project?
Publishing asap?

Quality of conference/journal?
Collaboration potential?
Flag-posting?

Increasing funding potential?
Finishing your PhD?

o Setting?

G AW
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Life is still not simple at all?

e \What are your objectives for

your current research project?
Publishing asap?

Quality of conference/journal?
Collaboration potential?
Flag-posting?

Increasing funding potential?
Finishing your PhD?

e Truly cooperative though?

G AW
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Mathematical models

/ fully observable

MOSG

MOMMDP

MOMAMAB

MONFG

MOBG

\ stateless

cooperative

MODec-POMDP

MOCBG

MOPOSG

Oregon State
&’ University

§Wf}é Utrecht
%T§ University

Models:

On the basis of rewards (in
objectives) and observations
(about states).
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Mathematical models

/ fully observable

MOSG

MOMMDP

MOMAMAB

MONFG

MOBG

\ stateless

cooperative \

MODec-POMDP

MOCBG

MOPW

Oregon State
&’ University

:§V% Utrecht
%TL\\\? University

Models:

On the basis of rewards (in
objectives) and observations
(about states).

But utility is not yet modelled!
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MOMADM taxonomy
based on rewards and utilities (Patrick)
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Taxonomy

Reward Utility

Multi-objective

multi-agent
decision making

/\

Radulescu, R., Mannion, P., Roijers, D. M., &
Noweé, A. (2020). Multi-objective multi-agent

decision making: a utility-based analysis and
survey. Autonomous Agents and Multi-Agent
Systems, 34(1), 1-52.
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Taxonomy

Multi-objective

multi-agent
decision making

% Oregon State

University

Reward

Team
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Solution concepts

UTILITY
TEAM SOCIAL CHOICE INDIVIDUAL
Coverage sets
. (+ Negotiation)
= Coverage sets Mechanism design
a 3 Equilibria and
o< stability concepts
=
E 5 Equilibria and
§ stability concepts
§ Mechanism design
E Coverage Sets as

best responses

Radulescu, R., Mannion, P., Roijers, D. M., & Nowe, A. (2020). Multi-objective multi-agent decision making: a utility-based
analysis and survey. Autonomous Agents and Multi-Agent Systems, 34(1), 1-52.

o <l
'.. Oregon State §¥% Utrecht
& University N -niversity

QLLSCOILNA
A GAILLIMHE

¥ UNIVERSITY
OF GALWAY 75




Coverage sets

UTILITY
TEAM SOCIAL CHOICE INDIVIDUAL
Coverage sets
= (+ Negotiation)
M . . 3 Coverage sets Mechanism design
e Contain at least one optimal policy . ¢
S:t stability concepts
o op e . 2
for each possible utility function R
g stability concepts
E Mechanism design
é Coverage Sets as

best responses

e TRTU: rewards and derived utility is
shared between agents, with one utility function selected during
execution

e TRIU: agent can (contractually) agree which policy to execute

e |[RIU: set of possible best responses to the behaviour of other
agents

(et W
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Coverage sets: negotiation

e Automated negotiation

e Autonomous negotiating agents, representing their user’s
interests/preferences

e Reach a compromise that satisfies all the involved parties

e Pursue equity (i.e., fairness and justice)

e Baarslag, T, Kaisers, M., Gerding, E., Jonker, C. M., &
Gratch, J. (2017). When will negotiation agents be
able to represent us? The challenges and
opportunities for autonomous negotiators.
International Joint Conferences on Artificial
Intelligence.

e Aydogan, R, & Jonker, C. M. (2023). A Survey of
Decision Support Mechanisms for Negotiation. In
Recent Advances in Agent-Based Negotiation:
Applications and Competition Challenges (pp.
30-51). Singapore: Springer Nature Singapore.
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Social Welfare and Mechanism Design

UTILITY
TEAM SOCIAL CHOICE INDIVIDUAL
Coverage set;
(+ Negotiation)
C ge set; Mechanism desig;
E Equilibria and

e System perspective: what is a socially
desirable outcome

REWARD

Mechanism design

Vi T ui(vi)

nijk4>environment< VJ_;» uj(Vj) / W(u(V), uj(Vj),uk(Vk))
\"/

 uv)

Design a system that forces agents to the truthful about their
utilities and leads to optimal solution under W
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Equilibria and stability concepts

e Stable outcomes from which
self-interested
agents have no incentive to deviate

e Nash equilibria, correlated equilibria,
cyclic equilibria, coalition formation
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UTILITY

REWARD

Mechanism design

Sy
2P  OLLSCOILNA
fﬁw\g‘ GAILLIMHE
"I-I?A' UNIVERSITY

LAl

LY OF GALWAY 79



Nash Equilibrium

No agent can improve their utility by unilaterally deviating from
the joint strategy WNE

Nash equilibrium under SER:
Eu; [ps (7] ¥, 78 F)| > Bu; [ps (s, 7))

Nash equilibrium under ESR:
[Epz( NE) WNE)] > Uyj []Epz (7T27 NE)]

W
Oregon State e g:lri%celgity
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Other solution concepts

e Cyclic Nash equilibria
e No agent can improve their utility by

unilaterally deviating from a joint cyclic
strategy

e Correlated equilibria

e No agent can improve their utility by unilaterally
deviating from the recommendation of the
correlated signal, given by an external
mechanism
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Part 3 - Deep dive in the MOMADM taxonomy
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3.1 Team Reward - Team Utility

T, » environment -V ulVv)
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Team Reward Team Utility

s

Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-I|
.

-

Roijers et al. (2013). Multi-objective variable elimination for collaborative graphical games

Roijers et al. (2014). Linear support for multi-objective coordination graph

G

s

Brys et al. (2014). Distributed learning and multi-objectivity in traffic light control

Agrawal et al. (2015). Non-additive multi-objective robot coalition formation

.

e N
i Oregon State X ggiircelll'zity
v’ University N

Credit assignment in EA

Joint actions with
coordination graphs

Scalarization and Coaliations
in RL + EAs
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Reinforcement Learning

State s o

Action a Agent

Reward T

Policy (Agent) m(als) w:SxA—=]0,1]

Episode Length T

Transitions (s, a, s, 7) . .
Objective

Discounted Return G =L ylr

max E [X; 7]
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Why Evolutionary Algorithms?

How do we optimize without gradients?

Insect fly

Reptiles
Dinosaurs

o Creative diverse solutions

e Good at escaping local minima

e Can find partial solutions

e Good at combining partial solutions

Cully et al. (2015). Robots that can adapt like animals

Such et al. (2017). Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning

Chatzilygeroudis et al. (2021). Quality-diversity optimization: a novel branch of stochastic optimization
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Evolutionary Algorithms
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How to solve RL Problems?

(®)
"
Agent

Environment

Objective
J = max E[R(7)]

To R

(e RN

e Oregon State X ggiircelll'zity
<’ University N
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Evolutionary Perspective for RL

™ =

Environment

Q Q O
) "
(@) )
SASAC ©
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(D) () () (p
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Evolutionary Perspective for RL

(®)
"
Agent
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Neuroevolution for RL

-@

E Agent

T SRS
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Neuroevolution for RL

Convgluiion Convglution Fully cgnnecled

_"
s
<
8
s
5
3
Q
@
Q

> ]

|

| AN : Hyperparameter Humanoid Image Atari
| = D IEI m ' ‘ . Locomotion Hard Maze
of ] B m . : Population Size (N) ~ 12,500+1  20,000+1  1,000+1
/s . . . .
g IEEAY { Mutation power (o) 0.00224 0.005 0.002
g . . v
- of | 9 [4 N Q ! ) Q 1 Truncation Size (T) 625 61 20
of ] H\ = v/ } Number of Trials 5 1 1
2\ t/] 1 ! Archive Probability 0.01
¥/ 1 y
.
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Evolution Strategies for RL

O (,}) O
)
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Evolution Strategies for RL

David Ha (2017). Visual Evolution Strategies https://blog.otoro.net/2017/10/29/visual-evolution-strategies

Salmans et al. (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Chrabaszcz et al. (2018). Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari
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Team Reward Team Utility

[Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-I| ]

( )
Roijers et al. (2013). Multi-objective variable elimination for collaborative graphical games
Roijers et al. (2014). Linear support for multi-objective coordination graph

\_

( )
Brys et al. (2014). Distributed learning and multi-objectivity in traffic light control
Agrawal et al. (2015). Non-additive multi-objective robot coalition formation

. J
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Credit assignment in EA

Joint actions with
coordination graphs

Scalarization and Coaliations
in RL + EAs
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Non-dominated Sorting Genetic Algorithm (NSGA-II)

Deb et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II

@)

f

A(z1,y1) is dominated by B(za y2) when: (z1 < x2and y; < y2)and (z; < x2 oryl < ys)
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NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II
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NSGA-II
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Multiagent Credit Assignment

Evaluation

{
R
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Evaluation Evaluation

{
R
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NSGA-I| - Multiagent Credit Assignment
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NSGA-I| - Multiagent Credit Assignment

11 g
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o :.. .....
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] 16, at? ;m” 2
2 0.46 . i, ., ';"'lfff i e 2
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> X 042 e " Mtz ema ot
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Capacity Utility (Gcap)

Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-II
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MOMAPPO (Roxana)

e Extension of the MAPPO algorithm to return a Pareto set of
multi-agent policies in cooperative problems

e Employs decomposition to divide the MO problem into a collection
of single-objective problems solved by a multi-agent RL algorithm

Felten, F., Ucak, U., Azmani, H., Peng, G., Ropke,
W., Baier, H., ... & Radulescu, R. (2024, August).
MOMAIand: A Set of Benchmarks for
Multi-Objective Multi-Agent Reinforcement
Learning. In Multi-objective Decision Making
Workshop at ECAI 2024.
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MOMAPPO

12000 A

10000 A

8000 A

6000 -

Far from others

4000 1

Felten, F., Ucak, U., Azmani, H., Peng, G., Ropke,
W., Baier, H., ... & Radulescu, R. (2024, August).
MOMAIand: A Set of Benchmarks for
Multi-Objective Multi-Agent Reinforcement
Learning. In Multi-objective Decision Making

Workshop at ECAI 2024.
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MO-MIX

e Conditions the value function network on the preferences
e Uses a Multi-Objective Mixing Network to concatenate the agent’s

Va lues algorithm = MO-MIX
=2t f":r'\'of = O
—40 .'...;:f e
N 60 o
- ‘et e"
2 -80 o -::
= ¢ ..? .
-100 "ot
R Hu, T, Luo, B., Yang, C., & Huang, T. (2023).
~120 '0,.;.;-), MO-MIX: Multi-objective multi-agent cooperative
N .."«,. decision-making with deep reinforcement
548 o learning. IEEE Transactions on Pattern Analysis
—180 —160 —140 —120 —100 —80 —60 —40 and Machine Intelligence, 45(10), 12098-12112.
objective 1
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3.2 Team Reward - Individual utility

u(v)

T, >environment——» \' u(V)

u (V)
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Evolutionary Perspective for RL

=

Environment
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Evolutionary and Reinforcement Learning Loop

\/
\ &
Replay Buffer
Evaluation
> » ()
> @
0 o Critic Actor
X (D))
EA Population
Oregon State AW Utrecht. AT Crivini:
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Evolutionary Reinforcement Learning (ERL)

EA population
XY % => Parameter-space exploration
&
Replay Buffer RL actor
Evaluation

=> action-space exploration

@

2 6

= =

0 o Critic Actor . .. .. . .
(. ‘, Actor is periodically injected in the EA population
= &

EA Population

Khadka & Tumer (2018). Evolution-guided policy gradient in reinforcement learning
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Evolutionary Reinforcement Learning (ERL)

Outperforms EA and RL baselines

12000
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s g
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Million Steps Million Steps Million Steps
(d) Ant (e) Hopper (f) Walker2D

Khadka & Tumer (2018). Evolution-guided policy gradient in reinforcement learning
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Multi-Objective Multiagent ERL

W/

Evaluation Replay Buffers

'
@
©
@.
P

&2
Critics Actors
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T

@
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EA Population
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Multi-Objective Multiagent ERL

\/

©

Q6

EA Population

Evaluation

Replay Buffers

&2

Critics Actors

Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems

Oregon State
&’ University

&*‘?’% Utrecht
Zus University

NS

EA population

=> Improve team trade-offs

RL actors

=> maximize individual utilities

Actors are periodically injected in the EA population
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Multi-Objective Multiagent ERL

| e e MO-AIM (S=3)
) Islands ’ ’ l £ o e MO-AIM (S=1)
(Utility and Diversity) — PR SN— *&. —
( \ ¢/ \ Behaviérépace 0.8 ° o MCAA (NSGA-II)
° e MCAA (d)
0 . o SPEA2 (0)
gz : F06 0. b e MRL (®; Best)
e ey L S NSGA (®; MAIM)
< © ‘. o o ©o o
g g 0.4 o%e > % [
R © L S o
‘2’ 8 1~ “ L 8 ~ ... %

. =~ > °
Mainland S0.2 o * S ORI
(Team Optimization) < . °

® ) - o0 o °
0.0 S »
ilel (o] (ei]ea] (6] ---[o]ey] o] :
Team 1 Team 2 Team M 0.0 0.2 0.4 0.6 0.8
¢1 (fine dig sites)
Outperforms MOEA and MORL baselines
Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems
SN T N
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Add Diversity for Improved Coverage

Generate EA population by sampling

from RL actors
XY,

% Update RL actors to maximize coverage
Evaluation Replay Buffers

in the behavior space

©

@
@
2

T
T
- (1
)

Critics  Actors Diverse policies are periodically

(D))
&/ injected in the EA population
EA Population

~
.
.
.
=

Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems

Tp &
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Quality-Diversity for MOMA Problems

Worst Best

rastrigin2d_no_run9_300000 AREA: 723.7627352651502 rastrigin2d_no_rung_300000 AREA: 4017.1973208506693

MOME

beh[3]
cbeh[3]D

bentol 7 ‘behio]

Ours (a) No CF Behavior Space (b) 1 CF Behavior Space

Outperforms MOEA and Diversity-Search baselines

Nickelson et al. (2023). Shaping the Behavior Space with Counterfactual Agents in Multi-Objective Map Elites

” Oregon State AW Uereche WA Critimie
University T Unrversity e

_beh[3]

beh[0]
(c) 9 CFs Behavior Space

Layers away from the global Pareto front

100+
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MOMA: EA and RL

e ™)
Yliniemi et al. (2016). Multi-Objective Multiagent Credit Assignment in reinforcement learning and NSGA-I|

. J

4 )

Khadka & Tumer (2018). Evolution-guided policy gradient in reinforcement learning

Leibo et al. (2019). Malthusian Multi-Objective Reinforcement Learning

G

é )

Dixit et al. (2023). Learning synergies for multi-objective optimization in asymmetric multiagent systems

Nickelson et al. (2023). Shaping the Behavior Space with Counterfactual Agents in Multi-Objective Map Elites

G J

e N
i Oregon State X ggiircelll'zity
v’ University N

Credit assignment in RL and EA

Evolutionary + Reinforcement
Learning

Diversity in utilities, trade-offs +
better coverage
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Multi-Objective Normal Form Games (Patrick)

e Introduced by Blackwell in 1956

e MONFG - tuple (N, A, p), withn =2 and C = 2 objectives, where:
e N={1, .., n}-setof players
e A=A X-XA -setofactions
e p=(p,.. P, )—vectorial payoffs

o <
A R
e Oregon State X ggiircelll'zity
<’ University N
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Example - SER

u(py,p2) = p1 - P2

A B

A | (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2,10); (2, 10)

QLLSCOILNA
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Example - Nash equilibrium

u(p1,P2) = D1 * P2

A B

10,2) =10:-2 =20 <«

SRl
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&7 University Y VST Qig® v oai 128




Example - Cyclic Nash equilibrium

P1 ° P2

e Joint cyclic strategy u(pl' Pz) -
e Player 1: {A, B}
e Player 2: {A, B}
1042 2+10 A
+ + )
Wy g ) =66 =560 A (10,2); (10,2

B
—<2Q; (0,0)
N

B | (0,0)(0,

(2, 10); (2, 10)

ST
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Example - Correlated equilibrium

e Correlated strategy o _
e 50% (A, A) u(p1,p2) = p1 D2

e 50% (B, B)

A B

1042 2+ 10
w5 5

) = u(6,6) = 36 A | (10,2);(10,2) | (0,0); (0, 0)

B (0, 0); (0, 0) (2,10); (2, 10)
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(Im)balancing Act Game

e 2 players, 2 objective
e Same payoff vector for both players m B 22l e

U1(2P1,P2]) = pi + P>
uz2(|p1,D2]) = p1 - P2

@ oepnsae  @unn,
» University w>
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ESR Equilibrium

e equilibrium 1: (0.75, 0, 0.25) and (0O, 1, 0)
expected utilities: 10 and 3

e equilibrium 2: (0.25, 0, 0.75) and (0O, 1, 0)
expected utilities: 10 and 3

ui([p1, p2]) = p? + p3
us([p1,p2]) = p1 - po

Radulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., &
Nowé, A. (2020). A utility-based analysis of equilibria in
multi-objective normal-form games. The Knowledge
Engineering Review, 35.

@Roregonstate R e
Y University N
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SER Equilibrium?

e In finite MONFGs, where each agent seeks -mn

D[40 31 [2.2]
3,1] 12,2] [1,3]

L 1221 [1,3] [04]

ui([p1, p2]) = p? + p3
us([p1,p2]) = p1 - po

to maximise the utility under SER, Nash
equilibria need not exist.

Player 1 Player 2

Radulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., &
Nowé, A. (2020). A utility-based analysis of equilibria in
multi-objective normal-form games. The Knowledge
Engineering Review, 35.
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Bridging continuous games and MONFGs

e Continuous games:

e Single objective

e |nfinite number of pure strategies

e Continuous payoff functions

e Benefit from many theoretical results

e Algorithmically challenging Reéipke, W, Groenland, C., Rédulescu, R,
Nowe, A., & Roijers, D. M. (2023). Bridging

the Gap Between Single and Multi
Objective Games. AAMAS 2023.

Assumption: convex strategy set
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Bridging continuous games and MONFGs

e Build mapping between MONFGs and continuous games
e Ensure that it preserves key dynamics
e |everage the link for theoretical and algorithmic improvements

A B -

A | (10, 2); (10, 2) (2,3);(2,3) /\A
B | (42);(42) (6, 3); (6, 3) \/
S1

To <
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Bridging continuous games and MONFGs

05

0.0 =(0,0,1)

e Every mixed strategy in the MONFG
becomes a pure strategy in the continuous

6 =(0,1,0)

game

0 =(1,0,0)
0

Répke, W., Groenland, C., Radulescu, R.,
Nowé, A., & Roijers, D. M. (2023). Bridging
the Gap Between Single and Multi
Objective Games. AAMAS 2023.
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Bridging continuous games and MONFGs

/ \\’QO =(0,0,1)
A B C |

03

(4,1); (4, 1)

(1, 2);(4,2)

(2,1);(1,2)

(3,1); (2, 3)

(3, 2); (6, 3)

(1,2);(2,1)

(1,2);(2,1)

(2,1);(1,2)

(1,3); (1, 3)

To
Oregon State £
& University

D)
6 = (0,1,0)
60 = (1,0,0)
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Bridging continuous games and MONFGs

03

/ \\»qo: (0,0,1)
A B /c———\ ~

(4,1);(4,1) | (1,2);(4,2) | (2,1);(1,2) \ 62
6 =(0,1,0)
(3,1);(2,3) | (3,2);(6,3) | (1,2);(2,1)
(1,2);(2,1) | (2,1);(1,2) | (1,3);(1,3)
X6 =(1,0,0)
0,
” Oregon State g‘“ﬁ’% Utrecht_ MBS Shiiinie
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Bridging continuous games and MONFGs

03

/ \\»qo: (0,0,1)
A B /c———\ ~

(4,1);(4,1) | (1,2);(4,2) | (2,1);(1,2) \ 62
6 =(0,1,0)
(3,1);(2,3) | (3,2);(6,3) | (1,2);(2,1)
(1,2);(2,1) | (2,1);(1,2) | (1,3);(1,3)
X6 =(1,0,0)
0,
” Oregon State g‘“ﬁ’% Utrecht_ MBS Shiiinie
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Bridging continuous games and MONFGs

03
1 1 2
4 4 4 6.0 = (0,0,1)
A B C
S2
(4,1);(4,1) | (1,2);(4,2) | (2,1),(3,2) | b
9 =(0,1,0)
(3,1);(2,3) | (3,2);(6,3) | (1,2);(2,1)
(1,2);(2,1) | (2,1);(,2) | (1,3);(3,3)
‘9 = (1,0,0)
0
0 Oregon State §g’% Utrecht / ':_; e
University {/{{4‘“\\? University < UniversiTy 140




Theoretical insights

e Mixed strategy equilibria in the MONFG are
pure strategy equilibria in the continuous game

e Continuous games are not guaranteed to have
a pure strategy Nash equilibrium

» Nash equilibria are not guaranteed in
MONFGs
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Relations between optimisation criteria

e Mixed strategies

e No relation between both optimisation criteria in aeneral
u(z,y) = 0.1 x z 4+ max(0,z) * max(0,y)

A B
A B
A 1,0); (1,0 0,1),(0,1
1,01, 0) 0, 1; (0, 1) A 0.1;0.1 0;0
B (0,1);(0,1) | (-10, 0); (-10, 0) B 0; 0 0.1;-0.1
Multi-objective reward vectors Scalarised utility for both agents

No sharing of number of equilibria or equilibria themselves

QLLSCOILNA
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Relations between optimisation criteria

e Pure strategies
e Pure strategy equilibrium under SER is also one under ESR
e Bidirectional when assuming (quasi)convex utility functions

e We can extend this to blended settings
e Pure strategy equilibrium under SER is also one in any blended
setting
e Bidirectional when assuming (quasi)convex utility functions
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3.3 Individual Reward - Individual utility

Tt »environment V ——» uj(V,)

- u(V)
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Scalarised Individual Q-learning

e Assume a known linear utility function for each agent

IQL: [1.0, 0.0] —— 1QL: [0.0, 1.0] — 1IQL: [0.3, 0.7] — 1QL: [0.9, 0.1] IQL: [0.7, 0.3] — 1QL: [0.5, 0.5]

Learning Curves (Braessl)

19 1 Mannion, P., Devlin, S., Duggan, J., & Howley, E.
(2018). Reward shaping for knowledge-based
multi-objective multi-agent reinforcement learning.
The Knowledge Engineering Review, 33, e23.

iy
©
L

Felten, F., Ucak, U., Azmani, H., Peng, G., Ropke,
W., Baier, H., Mannion, P., Roijers, D.M., Terry,
J.K., Talbi, E.G. and Danoy, G., 2024. MOMAIland:
A Set of Benchmarks for Multi-Objective
Multi-Agent Reinforcement Learning. arXiv
preprint arXiv:2407.16312.

Braess Paradox

Average Travel Time
=
~

-
()]
L

151 -=-=

0 200 400 600 800 1000
Episodes

Oregon State §g’7’z Utrecht D icimie
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IRIU with dynamic preferences

ot 2 [ £ »

Cooperativeness

Figure 6: Tuning performance for two predator agents with
matched preferences

e Multi-objective Wolfpack environment — two predators
(blue) must catch a prey (red)

e Separate rewards for team capture and lone capture

e Changing the agents’ preferences for team/lone captures
influences the team capture rate

To %

(e RN

e Oregon State X ggiircelll'zity
<’ University N

Team Capture Rate
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Predator 2 Cooperativeness
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8

0.125

0.000

0.000 0.125 0250 0375 0500 0625 0750 0.875 1.000
Predator 1 Cooperativeness

Figure 7: Tuning performance for two predator agents with
varied preferences

O'Callaghan, D. and Mannion, P., 2021, May.
Tunable behaviours in sequential social dilemmas
using multi-objective reinforcement learning. In
Proceedings of the 20th international conference
on autonomous agents and multiagent systems
(pp. 1610-1612).
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3.4 Team Reward - Social Choice

(Roxana)

— lenvironmen——» Vv 4 u(V) W(u(V), u(V), u,(V))

T[ijk \ j

u (V)
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3.5 Individual Reward - Social Choice

T »|environment V.—» u\v) W(u(Vv,), Uj(Vj)v uv,))

ijk i it
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Generalised Toll-based Q-learning

Considers the toll-based route choice problem, where
self-interested agents repeatedly commute attempting to
minimise their travel times and costs

Realigns agents’ heterogeneous preferences over travel time and
monetary expenses to obtain a system-efficient equilibrium

Ramos, G. D. O., Radulescu, R., Nowé¢, A., &
Tavares, A. R. (2020, May). Toll-based learning for
minimising congestion under heterogeneous
preferences. In Proceedings of the 19th
International Conference on Autonomous Agents
and MultiAgent Systems (pp. 1098-1106).
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Additional work

e Conor F. Hayes, Timothy Verstraeten, Diederik M. Roijers, Enda Howley, Patrick Mannion - Multi-Objective
Coordination Graphs for the Expected Scalarised Returns with Generative Flow Models. In European
Workshop on Reinforcement Learning (EWRL 2022), Milan, 2022

e Radulescu, R., Verstraeten, T., Zhang, Y., Mannion, P., Roijers, D. M., & Nowé, A. (2022). Opponent learning
awareness and modelling in multi-objective normal form games. Neural Computing and Applications, 1-23.

e Ropke, W., Roijers, D. M., Nowég, A., & Radulescu, R. (2022). Preference communication in multi-objective
normal-form games. Neural Computing and Applications, 1-26.
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Part 4 Tools and open problems
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Benchmarks and Tools - MO-Gymnasium

L) (g [ N N N
B o o] o N B
o o o o o o

Expected Return of Height Objective
=
N
=

(]

Alegre et al. 2022. MO-Gym: A
Library of Multi-Objective
Reinforcement Learning
Environments. In Proceedings of
the 34th Benelux Conference on
Artificial Intelligence
BNAIC/Benelearn 2022.

GPI-LS + GPI-PD (ours)
GPI-LS (ours)

PGMORL ®

180 200 220 240 260
Expected Return of Velocity Objective

NI
Oregon State X gffﬁgiﬁny
» University N
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Benchmarks and Tools

Environments

Obs/Action

spaces

resource-

gathering-v@

7 Oregon State
< University

Objectives

[treasure,

time_penalty]

[enemy, gold, gem]

[nutril, ..., nutrié]

Sl 2
A Utrecht g i
> = ; g
/"/{ﬂ!\\\s University ngcl;XEsvsAlyTY

MO-Gymnasium

Description

Agent is a submarine that must collect a
treasure while taking into account a time

penalty. Treasures values taken from

Agent must collect gold or gem. Enemies have

a 10% chance of killing the agent. From

153



Implemented Algorithms

Single/Multi-

" ESR/SER
policy

Multi

SER/ESR

Multi

Multi SER

Single SER

Multi SER

SER

Observation
space

Continuous

/
Continuous

Continuous

Continuous

Continuous

Discrete

Discrete

Discrete

Oregon State
&’ University

Action
space

Discrete /
Continuous

/
Discrete

Continuous
Continuous

Discrete /
Continuous

Discrete

Discrete
Discrete

Section 3.3 of the
thesis

ZS‘W’//; Utrecht
%T!\§ University

Felten, F., Alegre, L. N, Nowe, A.,
Bazzan, A., Talbi, E. G, Danoy, G., &
C da Silva, B. (2024). A toolkit for
reliable benchmarking and research
in multi-objective reinforcement
learning. Advances in Neural

Information Processing Systems, 36.
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MOMAland - MOMADM benchmarks

e Open source Python library for developing and comparing
multi-objective multi-agent reinforcement learning algorithms

i I 2y MOMAland

y https://momaland.farama.orqg/

Package
stability

T

Velocity
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https://momaland.farama.org/

MOMAland - MOMADM benchmarks

g ¥ 3
§ g s & & &
IS S S
Domain » ¥ @"o \s Q’? ‘@‘v 'gb b& 8% W
MO-BPD 2n 2 XX v v v d d M O I\/I A l a n Cl
MO-ItemGathering 2-n 2-d x3 v X X v d d \%- §/
MO-GemMining 2-n 2-d x3 - - X v - d
MO-RouteChoice 2-n 2 X3 - - X v - d
MO-PistonBall 2n 3 X3 X v X v c d/c .
it ol B S A T A R https://momaland.farama.org/
CrazyRL/Surround 2-n 2 X v X v v c c
CrazyRL/Escort 2-n 2 X v X v v c c
CrazyRL/Catch 2-n 2 v 4 X v v c c
MO-Breakthrough 2 1-4 X v X X v d d
MO-Connect4 2 2-20 X v X X v d d
MO-Ingenious 2-6 2-6 X v v v v d d
MO-SameGame -5 2-10 X3 v X v v d d
\O\\WV[}} h OLLSCOILNA
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Open questions

e Solution concepts for the axiomatic approach to MOMA problems
e Results for more complex (e.g., sequential, partially observable) settings
e Integrated pipelines for planning -> negotiation -> execution

e Utility modelling, e.g., inferring preferences of other agents via
demonstrations or opponent modelling

e Strategic disclosure of utility information to the other agents
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Multi-Objective Decision Making Workshop

Tomorrow

e Full day workshop

e Location: V1 Ferrol at the School of
Communication Sciences
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https://modem2023.vub.ac.be/

Thank you for listening

e Questions?

e Any additional questions drop us a message at:
e dixitg@oregonstate.edu
e r.t.radulescu@uu.nl
e patrick.mannion@universityofgalway.ie
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This tutorial was based (primarily) on

Hayes, C. F., Radulescu, R., Bargiacchi, E., Kallstrom, J., Macfarlane, M., Reymond, M., ... & Roijers, D. M.
(2022). A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and
Multi-Agent Systems, 36(1), 26.

Radulescu, R., Mannion, P., Roijers, D. M., & Nowe, A. (2020). Multi-objective multi-agent decision making: a
utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems, 34(1), 1-52.

Radulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé¢, A. (2020). A utility-based analysis of equilibria
in multi-objective normal-form games. The Knowledge Engineering Review, 35.

Radulescu, R. (2021). Decision Making in Multi-Objective Multi-Agent Systems: A Utility-Based Perspective.

Brussels: Crazy Copy Center Productions.
Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential
decision-making. Journal of Artificial Intelligence Research, 48, 67-113.

Ropke, W., Roijers, D. M., Nowé, A., & Radulescu, R. (2022). On Nash equilibria in normal-form games with
vectorial payoffs. Autonomous Agents and Multi-Agent Systems, 36(2), 53.
Ropke, W., Groenland, C., Radulescu, R., Nowé, A., & Roijers, D. M. (2023). Bridging the Gap Between Single
and Multi Objective Games. AAMAS 2023.
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